About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Discrete Mathematics
Paper
New bounds on the anti-Ramsey numbers of star graphs via maximum edge q-coloring
Abstract
The anti-Ramsey number ar(G,H) with input graph G and pattern graph H, is the maximum positive integer k such that there exists an edge coloring of G using k colors, in which there are no rainbow subgraphs isomorphic to H in G. (H is rainbow if all its edges get distinct colors). The concept of anti-Ramsey number was introduced by Erdős et al. in 1973. Thereafter, several researchers investigated this concept in the combinatorial setting. Recently, Feng et al. revisited the anti-Ramsey problem for the pattern graph K1,t (for t≥3) purely from an algorithmic point of view. For a graph G and an integer q≥2, an edge q-coloring of G is an assignment of colors to edges of G, such that the edges incident on a vertex span at most q distinct colors. The maximum edge q-coloring problem seeks to maximize the number of colors in an edge q-coloring of the graph G. Note that the optimum value of the edge q-coloring problem of G equals ar(G,K1,q+1). Here, we study ar(G,K1,t), the anti-Ramsey number of stars, for each fixed integer t≥3, both from combinatorial and algorithmic point of view. The first of our main results presents an upper bound for ar(G,K1,q+1), in terms of number of vertices and the minimum degree of G. The second one improves this result for the case of triangle-free input graphs. Our third main result presents an upper bound for ar(G,K1,q+1) in terms of |E(G≤(q−1))|, which is a frequently used lower bound for ar(G,K1,q+1) and maximum edge q-coloring in the literature. All our results have algorithmic consequences.