About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISBI 2018
Conference paper
Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation
Abstract
Deep learning algorithms require large amounts of labeled data which is difficult to attain for medical imaging. Even if a particular dataset is accessible, a learned classifier struggles to maintain the same level of performance on a different medical imaging dataset from a new or never-seen data source domain. Utilizing generative adversarial networks in a semi-supervised learning architecture, we address both problems of labeled data scarcity and data domain overfitting. For cardiac abnormality classification in chest X-rays, we demonstrate that an order of magnitude less data is required with semi-supervised learning generative adversarial networks than with conventional supervised learning convolutional neural networks. In addition, we demonstrate its robustness across different datasets for similar classification tasks.