About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TAS
Paper
Self-timing and vector processing in RSFQ digital circuit technology
Abstract
As the operating speed of rapid single flux quantum (RSFQ) integrated circuits and systems increase, timing uncertainty from fabrication process variations makes global synchronization very hard. In this paper, the authors present a globally asynchronous, locally synchronous timing methodology for RSFQ digital design, which can solve the global synchronization problem. They also demonstrate the recent experimental results of some asynchronous circuits and systems implemented in RSFQ technology. Key components such as a self-timed shift register, a self-timed demultiplexor, a Muller-C element, a completion detector, and a clock generator have been designed and tested. High-speed operation has been confirmed up to 20 Gb/s for a prototype data buffer system, which consists two self-timed shift registers and an on-chip 8-28-GHz clock generator.