About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nano Letters
Paper
Self-assembled multilayers of nanocomponents
Abstract
We show it is possible to assemble nanoparticle-polymer layers in a controllable manner dictated by the difference in nano-object morphology and dielectric properties. A thin (10-100 nm) layer of the two components is spin coated onto a solid substrate and the system thermally aged to activate a cross-linking process between polymer molecules. The nanoparticles segregate to the solid substrate prior to complete cross-linking if entropic forces are dominant or to the air interface If dielectric (surface energy) forces are properly tuned. Subsequent layers are then spin coated onto the layer below, and the process is repeated to create layered structures with nanometer accuracy useful for tandem solar cells, sensors, optical coatings, etc. Unlike other self-assembly techniques the layer thicknesses are dictated by the spin coating conditions and relative concentration of the two components. © 2007 American Chemical Society.