About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
PRX Quantum
Paper
Second-Quantized Fermionic Operators with Polylogarithmic Qubit and Gate Complexity
Abstract
We present a method for encoding second-quantized fermionic systems in qubits when the number of fermions is conserved, as in the electronic structure problem. When the number F of fermions is much smaller than the number M of modes, this symmetry reduces the number of information-theoretically required qubits from Θ(M) to O(FlogM). In this limit, our encoding requires O(F2log4M) qubits, while encoded fermionic creation and annihilation operators have cost O(F2log5M) in two-qubit gates. When incorporated into randomized simulation methods, this permits simulating time evolution with only polylogarithmic explicit dependence on M. This is the first second-quantized encoding of fermions in qubits whose costs in qubits and gates are both polylogarithmic in M, which permits studying fermionic systems in the high-accuracy regime of many modes.