About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
This paper addresses the challenge of bridging the semantic gap between the rich meaning users desire when they query to locate and browse media and the shallowness of media descriptions that can be computed in today's content management systems. To facilitate high-level semantics-based content annotation and interpretation, we tackle the problem of automatic decomposition of motion pictures into meaningful story units, namely scenes. Since a scene is a complicated and subjective concept, we first propose guidelines from fill production to determine when a scene change occurs. We then investigate different rules and conventions followed as part of Fill Grammar that would guide and shape an algorithmic solution for determining a scene. Two different techniques using intershot analysis are proposed as solutions in this paper. In addition, we present different refinement mechanisms, such as film-punctuation detection founded on Film Grammar, to further improve the results. These refinement techniques demonstrate significant improvements in overall performance. Furthermore, we analyze errors in the context of film-production techniques, which offer useful insights into the limitations of our method.