About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Int. J. Parallel Program
Paper
Scaling Properties of Parallel Applications to Exascale
Abstract
A detailed profile of exascale applications helps to understand the computation, communication and memory requirements for exascale systems and provides the insight necessary for fine-tuning the computing architecture. Obtaining such a profile is challenging as exascale systems will process unprecedented amounts of data. Profiling applications at the target scale would require the exascale machine itself. In this work we propose a methodology to extrapolate the exascale profile from experimental observations over datasets feasible for today’s machines. Extrapolation models are carefully selected by means of statistical techniques and a high-level complexity analysis is included in the selection process to speed up the learning phase and to improve the accuracy of the final model. We extrapolate run-time properties of the target applications including information about the instruction mix, memory access pattern, instruction-level parallelism, and communication requirements. Compared to state-of-the-art techniques, the proposed methodology reduces the prediction error by an order of magnitude on the instruction count and improves the accuracy by up to 1.3× for the memory access pattern, and by more than 2× for the communication requirements.