About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IPDPS 2014
Conference paper
Scalable single source shortest path algorithms for massively parallel systems
Abstract
In the single-source shortest path (SSSP) problem, we have to find the shortest paths from a source vertex v to all other vertices in a graph. In this paper, we introduce a novel parallel algorithm, derived from the Bellman-Ford and Delta-stepping algorithms. We employ various pruning techniques, such as edge classification and direction-optimization, to dramatically reduce inter-node communication traffic, and we propose load balancing strategies to handle higher-degree vertices. The extensive performance analysis shows that our algorithms work well on scale-free and real-world graphs. In the largest tested configuration, an R-MAT graph with 238 vertices and 242 edges on 32,768 Blue Gene/Q nodes, we have achieved a processing rate of three Trillion Edges Per Second (TTEPS), a four orders of magnitude improvement over the best published results. © 2014 IEEE.