About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ECML PKDD 2019
Conference paper
Scalable Large Margin Gaussian Process Classification
Abstract
We introduce a new Large Margin Gaussian Process (LMGP) model by formulating a pseudo-likelihood for a generalised multi-class hinge loss. We derive a highly scalable training objective for the proposed model using variational-inference and inducing point approximation. Additionally, we consider the joint learning of LMGP-DNN which combines the proposed model with traditional Deep Learning methods to enable learning for unstructured data. We demonstrate the effectiveness of the Large Margin GP with respect to both training time and accuracy in an extensive classification experiment consisting of 68 structured and two unstructured data sets. Finally, we highlight the key capability and usefulness of our model in yielding prediction uncertainty for classification by demonstrating its effectiveness in the tasks of large-scale active learning and detection of adversarial images.