About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2019
Conference paper
Scalable fair clustering
Abstract
We study the fair variant of the classic k-median problem introduced by Chierichetti et al. (Chierichetti et al., 2017) in which the points are colored, and the goal is to minimize the same average distance objective as in the standard k-median problem while ensuring that all clusters have an "approximately equal" number of points of each color. Chierichetti et al. proposed a two-phase algorithm for fair k-clustering. In the first step, the pointset is partitioned into subsets called fairlets that satisfy the fairness requirement and approximately preserve the k-median objective. In the second step, fairlets are merged into k clusters by one of the existing k-median algorithms. The running time of this algorithm is dominated by the first step, which takes super-quadratic time. In this paper, we present a practical approximate fairlet decomposition algorithm that runs in nearly linear time.