About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2019
Conference paper
Characterization of convex objective functions and optimal expected convergence rates for SGD
Abstract
We study Stochastic Gradient Descent (SGD) with diminishing step sizes for convex objective functions. We introduce a definitional framework and theory that defines and characterizes a core property, called curvature, of convex objective functions. In terms of curvature we can derive a new inequality that can be used to compute an optimal sequence of diminishing step sizes by solving a differential equation. Our exact solutions confirm known results in literature and allows us to fully characterize a new regularizer with its corresponding expected convergence rates.