About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Allerton 2013
Conference paper
Robust subspace iteration and privacy-preserving spectral analysis
Abstract
We discuss a new robust convergence analysis of the well-known subspace iteration algorithm for computing the dominant singular vectors of a matrix, also known as simultaneous iteration or power method. The result characterizes the convergence behavior of the algorithm when a large amount noise is introduced after each matrix-vector multiplication. While interesting in its own right, the main motivation comes from the problem of privacy-preserving spectral analysis where noise is added in order to achieve the privacy guarantee known as differential privacy. © 2013 IEEE.