About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Naval Research Logistics
Paper
Robust capacity planning in semiconductor manufacturing
Abstract
We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing. Given multiple demand scenarios together with associated probabilities, our aim is to identify a set of tools that is a good compromise for all these scenarios. More precisely, we formulate a mixed-integer program in which expected value of the unmet demand is minimized subject to capacity and budget constraints. This is a difficult two-stage stochastic mixed-integer program which cannot be solved to optimality in a reasonable amount of time. We instead propose a heuristic that can produce near-optimal solutions. Our heuristic strengthens the linear programming relaxation of the formulation with cutting planes and performs limited enumeration. Analyses of the results in some real-life situations are also presented. © 2005 Wiley Periodicals, Inc.