About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Information Sciences
Paper
Representation and recognition of handprinted Chinese characters by string-matching
Abstract
This paper describes an optical recognition system for the handprinted Chinese characters. It is based on a novel string representation method and an inductive learning scheme that allows flexible (or elastic) representation and matching of unknown character instances. The system scans a character instance from four different views to obtain its peripheral segment information. A string representation is designed for representing the peripheral information at each of the four views. This representation can be generalized to represent the variations in different instances of a character by using an inductive learning algorithm. A clustering algorithm is developed to group the learned representation of characters into clusters in a hierarchical tree structure. Finally, a two-stage recognition process based on the developed representation is described. Experimental results demonstrate that high recognition rates can be obtained using the developed method. © 1993.