Publication
Journal of Applied Physics
Paper

Remote phonon scattering in field-effect transistors with a high κ insulating layer

View publication

Abstract

In this paper a remote phonon scattering of channel electrons in a field-effect transistor (FET) with a high dielectric constant (κ) insulator in between the gate and the channel is studied theoretically. The spectrum of phonons confined in the high κ layer and its modification by the gate screening is investigated. Only two phonon modes of five participate in the remote electron-phonon scattering. The gate suppresses one of the modes but increases scattering by the other. Numerical results for the channel mobility limited only by remote phonon scattering were obtained for a Si FET with a HfO2 layer and a SiO2 layer in between the channel and metallic gate. A surprising result is the reduction of the mobility compared to the case when the gate screening is absent. The dependence of the mobility on the widths of HfO2 and interfacial SiO2 layers on channel concentration and temperature was studied. The accuracy of the calculations based on the Boltzmann equation is discussed. Finally, a comparison of our results with available experimental data leads to the conclusion that the remote phonon scattering is not the dominating scattering mechanism. © 2008 American Institute of Physics.

Date

03 Jan 2008

Publication

Journal of Applied Physics

Authors

Share