About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
QELS 1992
Conference paper
Quantum noise and thermal noise In optical soiiton propagation
Abstract
Classical optical solitons propagate in optical fibers without temporal or spectral distortion as a result of a balance between phase shifts due to group velocity dispersion and those due to nonlinear self-phase modulation. This balance is achieved by the proper choice of pulse shape and duration for a given pulse energy. The quantum fluctuations associated with a coherent soliton do not undergo stationary propagation, however, and a number of effects are predicted, including the evolution of vacuum noise associated with the input coherent pulse into squeezed fluctuations and the temporal spreading of the soliton pulse because of dispersion acting on quantum fluctuations of the pulse frequency. © 1992 Optical Society of America