About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Quantum kinetic description of Coulomb effects in one-dimensional nanoscale transistors
Abstract
In this paper, we combine the modified electrostatics of a one-dimensional transistor structure with a quantum kinetic formulation of Coulomb interaction and nonequilibrium transport. A multi-configurational self-consistent Green's function approach is presented, accounting for fluctuating electron numbers. On this basis we provide a theory for the simulation of electronic transport and quantum charging effects in nanotransistors, such as a gated carbon nanotube and whisker devices and one-dimensional CMOS transistors. Single-electron charging effects arise naturally as a consequence of the Coulomb repulsion within the channel. © 2005 The American Physical Society.