About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Quantum-confined biexcitons i grown on Si(001)
Abstract
We report experimental evidence for the existence of three-dimensionally (3D) -confined biexcitons in a strain-relaxed (Formula presented)(Formula presented) layer grown on a stepwise graded buffer on Si(001) by ultrahigh vacuum chemical vapor deposition. A calculation of the photoluminescence line shape based on a simple model is found to be in good agreement with experiment. From this theoretical fit we deduce a binding energy of 1.55 meV for the 3D-confined biexcitons. This binding energy is larger than the reported value of 1.36 meV for a free biexciton in Si, indicating a quantum-confinement effect. © 1997 The American Physical Society.