About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
If the bits of computers are someday scaled down to the size of individual atoms, quantum mechanical effects may profoundly change the nature of computation itself. The wave function of such a quantum computer could consist of a superposition of many com-putations carried out simultaneously; this kind of parallelism could be exploited to make some important computational problems, like the prime factoring of large integers, tractable. However, building such a quantum computer would place undreamed of demands on the experimental realization of highly quantum-coherent systems; present-day experimental capabilities in atomic physics and other fields permit only the most rudimentary implementation of quantum computation.