About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Information Sciences
Paper
Properties of infinite covariance matrices and stability of optimum predictors
Abstract
The least-squares predictor for a random process which is generated by linear difference equations is known to obey similar linear difference equations. A stability theory is developed for such equations. Conditions under which the infinite covariance matrix of the process, considered as a bounded operator: l2 → l2, has a bounded inverse are shown to be both necessary and sufficient conditions for the stability of the optimum predictor. The same conditions also ensure the convergence of an algorithm for factoring recursively the infinite covariance matrix as a product of upper and lower triangular factors. Finally, it is shown that the stability obtained in this fashion is equivalent to uniform asymptotic stability. © 1969 American Elsevier Publishing Company, Inc.