About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Pattern Recognition
Paper
Properties and convergence of a posteriori probabilities in classification problems
Abstract
This report investigates the behavior of the a posteriori probabilities for classification problems in which the observations are not identically distributed. Some basic properties of the a posteriori probabilities are presented; then, it is shown that for each class the a posteriori probability converges a.s. to a random variable. Conditions are given for a.s. convergence of the a posteriori probability to 1 for the true class (and to 0 for all other classes). The results are illustrated for the case of two classes and binary observations, and finally a numerical example is presented. © 1977.