About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
COLM 2024
Conference paper
Prompt Exploration with Prompt Regression
Abstract
In the advent of democratized usage of large language models (LLMs), there is a growing desire to systematize LLM prompt creation and selection processes beyond iterative trial-and-error. Prior works majorly focus on searching the space of prompts without accounting for relations between prompt variations. Here we propose a framework, Prompt Exploration with Prompt Regression (PEPR), to predict the effect of prompt combinations given results for individual prompt elements as well as a simple method to select an effective prompt for a given use-case. We evaluate our approach with open-source LLMs of different sizes on several different tasks.