About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Thin Solid Films
Paper
Progress towards marketable earth-abundant chalcogenide solar cells
Abstract
Kesterite-related photovoltaic materials are considered a promising alternative to CdTe and Cu(In,Ga)(S,Se)2 absorbers, primarily because they are not reliant on scarce elements such as indium and tellurium or the heavy metal cadmium. Recently, we reported a performance breakthrough for this materials class, reaching by a simple hydrazine-based deposition technique 9.6% power conversion efficiency for Cu2ZnSn(S,Se)4 devices (40% improvement over vacuum-based methods). Here, more detailed characterization for a hydrazine-prepared device shows the potential of this technology for further efficiency improvement. We also present initial device results for Cu2ZnSn(S,Se)4 films deposited using a mixed water-hydrazine-based solvent, yielding devices with 8.1% efficiency. © 2011 Elsevier B.V.