About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SSDBM 2023
Conference paper
Privacy-Preserving Redaction of Diagnosis Data through Source Code Analysis
Abstract
Protecting sensitive information in diagnostic data such as logs, is a critical concern in the industrial software diagnosis and debugging process. While there are many tools developed to automatically redact the logs for identifying and removing sensitive information, they have severe limitations which can cause either over redaction and loss of critical diagnostic information (false positives), or disclosure of sensitive information (false negatives), or both. To address the problem, in this paper, we argue for a source code analysis approach for log redaction. To identify a log message containing sensitive information, our method locates the corresponding log statement in the source code with logger code augmentation, and checks if the log statement outputs data from sensitive sources by using the data flow graph built from the source code. Appropriate redaction rules are further applied depending on the sensitiveness of the data sources to preserve the privacy information in the logs. We conducted experimental evaluation and comparison with other popular baselines. The results demonstrate that our approach can significantly improve the detection precision of the sensitive information and reduce both false positives and negatives.