About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DEBS 2016
Conference paper
Poster: Multi-query outlier detection over data streams
Abstract
Real-time analytics of anomalous phenomena on streaming data typically relies on processing a large variety of continuous outlier detection requests, each configured with different parameter settings. The processing of such complex outlier analytics workloads is resource consuming due to the algorithmic complexity of the outlier mining process. In this work we propose a sharing-aware multiquery execution strategy for outlier detection on data streams called SOP. The key insight of SOP is to transform the problem of handling a multi-query outlier analytics workload into a single-query skyline computation problem. SOP achieves minimal utilization of both computational and memory resources for the processing of these complex outlier analytics workload.