About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Polymer Chemistry
Paper
Polyurethane-coated silica particles with broad-spectrum antibacterial properties
Abstract
Antimicrobial polymer-coated silica particles were synthesized using a "grafting to" approach. A number of polyurethanes (PU) and poly(ethylene glycol)-containing polyurethanes (PU-PEG) with and without free isocyanate end groups were synthesized by metal-free organocatalytic polymerization of isophorone diisocyanate and N-methyldiethanolamine in the absence or presence of PEG diol using 1,8-diazabicyclo[5.4.0]undec-7-ene as the catalyst, followed by covalent grafting onto primary amine, propyl chloride or benzyl chloride-functionalized silica particles via both surface-to-end-group (primary amine to isocyanate) and surface-to-backbone (propyl chloride or benzyl chloride to tertiary amine in PU and PU-PEG backbones, which generated quaternary ammoniums) attachment modes, resulting in various structures of the polymer-grafted surface. The free tertiary amine groups in the polymer coatings were quaternized using benzyl bromide or methyl iodide to impart antibacterial function. The samples were characterized by X-ray photoelectron spectroscopy (XPS), while their antibacterial efficacies and killing kinetics against Gram-positive S. aureus and Gram-negative E. coli were investigated. XPS spectra showed that the attachment mode on different types of surface-functionalized silica particles resulted in various degrees of polymer conjugation and subsequently led to varying antibacterial efficacies. The surface-to-end-group attachment mode after post-quaternization, in particular, produced PU-PEG-coated silica particles with excellent antibacterial potency against S. aureus and E. coli at a low particle concentration of 10 and 40 mg mL-1, respectively. By using the same batch of particles in repeated applications, it was found that the antibacterial effectiveness was maintained, and the surface-grafted polymer was stable. Overall, these polymer-coated silica particles have good potential for practical antibacterial applications.