About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes
Abstract
We measure the voltage at which the current under illumination in poly[2-methoxy, 5-(2-ethylhexoxy)-1,4-phenylene vinylene] based light emitting diodes is equal to the dark current. At low temperatures, this voltage, which we term the "compensation" voltage, is found to be equal to the built-in potential, as measured with electroabsorption on the same diode. Diffusion of thermally injected charges at room temperature, however, shifts the compensation voltage to lower values. A model explaining this behavior is developed and its implications for the operation of organic light emitting diodes and photovoltaic cells are briefly discussed. © 1998 American Institute of Physics.