About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Materials Chemistry
Review
Photogenerated amines and their use in the design of a positive-tone resist material based on electrophilic aromatic substitution
Abstract
The photogeneration of an active amine within a cationically curable polymer coating can be used to design a novel positive-tone resist material. The resist is based on a copolymer containing 4-hydroxystyrene as well as 4-acetoxymethylstyrene units; when heated in the presence of an acid, this copolymer crosslinks through an electrophilic aromatic substitution process. Therefore, a small amount of 2-nitrobenzyl toluene-p-sulphonate, that decomposes upon heating to produce toluene sulphonic acid, is added to the resist along with a thermally stable but photoactive carbamate that liberates an amine upon irradiation. Exposure of a film of the resist to 254 nm UV radiation results in the formation of a latent image consisting of amine molecules dispersed within the polymer film. The latent image is 'fixed' by heating; this liberates acid, which is neutralized where amine has been formed, but causes crosslinking of the polymer by a cationic process in those areas of the film where no amine has been produced. This resist, based on an image-reversal concept applicable to numerous cationically activated resists, can be developed in aqueous base and shows a good sensitivity of ca. 19 mJ cm-2.