About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Molecular Structure: THEOCHEM
Conference paper
Phosphane lone-pair energies as a measure of ligand donor strengths and relation to activation energies
Abstract
Using density-functional theory as implemented in the projector- augmented wave method, we have calculated structures, energy levels, structures of the protonated forms, and proton affinities of the phosphanes PH3, PF3, P(CF3)3, PMe3, P(NMe2)3, P(C6H5)3, P(p-C6H4OMe2)3, and P(p-C6H4NMe2)3. The donor strengths of the phosphanes are discussed in terms of lone-pair energies and proton affinities. The influence of the donor ability of the phosphane ligands on the protonolytic cleavage of the metal-carbon bond in [NiCl(CH2CH2NH3)(PR3)2]+ complexes has been studied. A linear relationship between the lone-pair energies of the phosphanes and the activation barrier has been established. (C) 2000 Elsevier Science B.V.