About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Paper
Phase transition in a swarm algorithm for self-organized construction
Abstract
This paper reports on a system where very simple, noncommunicating mobile agents in a cellular (lattice) environment use purely local rules to construct connected structures from initially randomly distributed building blocks. We study the effect of block density on the final structure, demonstrating a percolationlike phase transition: Low block densities lead to the formation of small, disconnected structures but a single connected structure emerges abruptly beyond a critical density. The empirical study of the structure at the transition point shows scaling behavior, providing strong evidence for criticality. We also demonstrate that a simple change of rules can completely change the phase-transition effect. The results have implications for the self-organized construction of complex structures by swarms. © 2003 The American Physical Society.