Publication
IEEE Transactions on Electron Devices
Paper

Performance comparison between p-i-n tunneling transistors and conventional MOSFETs

View publication

Abstract

In this paper, we present a detailed performance comparison between conventional n-i-n MOSFET transistors and tunneling field-effect transistors (TFETs) based on the p-i-n geometry, using semiconducting carbon nanotubes as the model channel material. Quantum-transport simulations are performed using the nonequilibrium Green's function formalism considering realistic phonon-scattering and band-to-band tunneling mechanisms. Simulations show that TFETs have a smaller quantum capacitance at most gate biases. Despite lower on-current, they can switch faster in a range of on/off-current ratios. Switching energy for TFETs is observed to be fundamentally smaller than that for MOSFETs, leading to lower dynamic power dissipation. Furthermore, the beneficial features of TFETs are retained with different bandgap materials. These reasons suggest that the p-i-n TFET is well suited for low-power applications. © 2009 IEEE.

Date

Publication

IEEE Transactions on Electron Devices

Authors

Share