About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Discrete Optimization
Paper
Partition inequalities for capacitated survivable network design based on directed p-cycles
Abstract
We study the design of capacitated survivable networks using directed p-cycles. A p-cycle is a cycle with at least three arcs, used for rerouting disrupted flow during edge failures. Survivability of the network is accomplished by reserving sufficient slack on directed p-cycles so that if an edge fails, its flow can be rerouted along the p-cycles. We describe a model for designing capacitated survivable networks based on directed p-cycles. We motivate this model by comparing it with other means of ensuring survivability, and present a mixed-integer programming formulation for it. We derive valid inequalities for the model based on the minimum capacity requirement between partitions of the nodes and give facet conditions for them. We discuss the separation for these inequalities and present results of computational experiments for testing their effectiveness as cutting planes when incorporated in a branch-and-cut algorithm. Our experiments show that the proposed inequalities reduce the computational effort significantly. © 2007 Elsevier Ltd. All rights reserved.