About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Oscillations in giant magnetoresistance and antiferromagnetic coupling in [Ni81Fe19/Cu]N multilayers
Abstract
We report giant magnetoresistance in [Ni81Fe19/Cu] N multilayers. Saturation magnetoresistance values exceeding 16% for saturation fields of only 600 Oe are found at 300 K. In addition, we show evidence for well-defined oscillations in saturation magnetoresistance as a function of Cu spacer layer thickness at 4.2 K, with an oscillation period and phase similar to that in Co/Cu multilayers. However, the temperature dependence of the magnetoresistance, while weak for thin Cu layers, is much stronger for thicker Cu layers. Consequently at 300 K only a single oscillation in magnetoresistance for thin Cu layers is found. We show that the properties of the Ni81Fe19/Cu multilayers are very sensitive to annealing at moderate temperatures, which may limit the possible technological applications of such structures.