About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IM 2015
Conference paper
Optimizing capacity allocation for big data applications in cloud datacenters
Abstract
To operate systems cost-effectively, cloud providers not only multiplex applications on the shared infrastructure but also dynamically allocate available resources, such as power and cores. Data intensive applications based on the MapReduce paradigm rapidly grow in popularity and importance in the Cloud. Such big data applications typically have high fan-out of components and workload dynamics. It is no mean feat to deploy and further optimize application performance within (stringent) resource budgets. In this paper, we develop a novel solution, OptiCA, that eases the deployment of big data applications on cloud and the control of application components so that desired performance metrics can be best achieved for any given resource budgets, in terms of core capacities. The control algorithm of OptiCA distributes the available core budget across co-executed applications and components, based on their 'effective' demands obtained through non-intrusive profiling. Our proposed solution is able to achieve robust performance, i.e., with very minor degradation, in cases where resource budget decreases rapidly.