About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Optimized stray-field-induced enhancement of the electron spin precession by buried Fe gates
Abstract
The magnetic stray field from Fe gates is used to modify the spin precession frequency of InGaAsGaAs quantum-well electrons in an external magnetic field. By using an etching process to position the gates directly in the plane of the quantum well, the stray-field influence on the spin precession increases significantly compared with results from previous studies with top-gated structures. In line with numerical simulations, the stray-field-induced precession frequency increases as the gap between the ferromagnetic gates is reduced. The inhomogeneous stray field leads to additional spin dephasing. © 2007 American Institute of Physics.