About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGMETRICS/IFIP 2012
Conference paper
Optimized cloud placement of virtual clusters using biased importance sampling
Abstract
We introduce an algorithm for the placement of constrained, networked virtual clusters in the cloud, that is based on importance sampling (also known as cross-entropy). Rather than using a straightforward implementation of such a technique, which proved inefficient, we considerably enhance the method by biasing the sampling process to incorporate communication needs and other constraints of placement requests to yield an efficient algorithm that is linear in the size of the cloud. We investigate the quality of the results of using our algorithm on a simulated cloud. © 2012 Author.