About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Trans. Inf. Theory
Paper
Connectivity Properties of a Packet Radio Network Model
Abstract
A model of a packet radio network in which transmitters with range R are distributed according to a twodimensional Poisson point process with density D is examined. To ensure network connectivity, it is shown that πR 2D, the expected number of nearest neighbors of a transmitter, must grow logarithmically with the area of the network. For an infinite area there exists an infinite connected component with nonzero probability if πR2D > N0, for some critical value N0. We show that 2.195 < N0 < 10.526. © 1989 IEEE