Fan Zhang, Junwei Cao, et al.
IEEE TETC
Given a sequence of n points that form the vertices of a simple polygon, we show that determining a closest pair requires Ω(n log n) time in the algebraic decision tree model. Together with the well-known O(n log n) upper bound for finding a closest pair, this settles an open problem of Lee and Preparata. We also extend this O(n log n) upper bound to the following problem: Given a collection of sets with a total of n points in the plane, find for each point a closest neighbor that does not belong to the same set. © 1992.
Fan Zhang, Junwei Cao, et al.
IEEE TETC
Beomseok Nam, Henrique Andrade, et al.
ACM/IEEE SC 2006
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Yun Mao, Hani Jamjoom, et al.
CoNEXT 2006