About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DSN 2006
Conference paper
Optimal resilience for erasure-coded byzantine distributed storage
Abstract
We analyze the problem of efficiently storing large amounts of data on a distributed set of servers that may be accessed concurrently from multiple clients by sending messages over an asynchronous network. Up to one third of the servers and an arbitrary number of clients may be faulty and exhibit Byzantine behavior. We provide the first simulation of a multiple-writer multiple-reader atomic read/write register using erasure-coding in this setting that achieves optimal resilience and minimal storage overhead. Additionally, we give the first implementation of non-skipping times-tamps which provides optimal resilience and withstands Byzantine clients; it is based on threshold cryptography. © 2006 IEEE.