Christos Boutsidis, Alex Gittens
SIMAX
The CUR decomposition of an m × n matrix A finds an m × c matrix C with a subset of c < n columns of A, together with an r × n matrix R with a subset of r < m rows of A, as well as a c × r low-rank matrix U such that the matrix CUR approximates the matrix A, that is, ∥A-CUR∥2 F ≤ (1 + ϵ) ∥A-Ak∥2 F, where ∥. ∥F denotes the Frobenius norm and Ak is the best m × n matrix of rank k constructed via the SVD. We present input-sparsity-time and deterministic algorithms for constructing such a CUR decomposition where c = O(k/ϵ) and r = O(k/ϵ) and rank(U) = k. Up to constant factors, our algorithms are simultaneously optimal in the values c, r, and rank(U).
Christos Boutsidis, Alex Gittens
SIMAX
Srikanta Tirthapura, David P. Woodruff
Algorithmica
Eric Price, Zhao Song, et al.
ICALP 2017
Mina Ghashami, Edo Liberty, et al.
SIAM Journal on Computing