About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Optical measurements of thermal diffusivity of a material
Abstract
The measurement of thermal diffusivity of a material (in particular, a thin film) is important for various reasons, e.g., to predict the heat transfer in the solid subjected to a thermal process, to monitor surface composition or morphology, or to detect invisible subsurface defects like delaminations. This measurement can be done in a noncontact manner using various photothermal methods. Such methods typically involve pulsed heating of the surface by small amounts using a laser source; the decay of the surface temperature after this pulsed photothermal heating is then probed to provide the thermal diffusivity. Various probing methods have been developed in the literature, including the probing of reflection, refraction, and diffraction from the pulsed heated area, infrared thermal radiometry, and surface deformation. This paper provides an overview of such techniques and some examples of their applications. © 1995 Plenum Publishing Corporation.