About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
We consider the problem of providing QoS guarantees to Grid users through advance reservation of resources. Advance reservation mechanisms provide the ability to allocate resources to users based on agreed-upon QoS requirements and increase the predictability of a Grid system, yet incorporating such mechanisms into current Grid environments has proven to be a challenging task due to the resulting resource fragmentation. We use concepts from computational geometry to present a framework for tackling the resource fragmentation, and for formulating a suite of scheduling strategies. We also develop efficient implementations of the scheduling algorithms that scale to large Grids. We conduct a comprehensive performance evaluation study using simulation, and we present numerical results to demonstrate that our strategies perform well across several metrics that reflect both user- and system-specific goals. Our main contribution is a timely, practical, and efficient solution to the problem of scheduling resources in emerging on-demand computing environments. © 2011 Elsevier Inc. All rights reserved.