About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
arXiv
Paper
On the Use of Generative Models in Observational Causal Analysis
Abstract
The use of a hypothetical generative model was been suggested for causal analysis of observa- tional data. The very assumption of a particular model is a commitment to a certain set of variables and therefore to a certain set of possible causes. Estimating the joint probability distribution of can be useful for predicting values of variables in view of the observed values of others, but it is not sufficient for inferring causal relationships. The model describes a single observable distribution and cannot a chain of effects of intervention that deviate from the observed distribution.