About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2021
Conference paper
Integer Programming for Causal Structure Learning in the Presence of Latent Variables
Abstract
The problem of finding an ancestral acyclic directed mixed graph (ADMG) that represents the causal relationships between a set of variables is an important area of research for causal inference. However, most of existing score-based structure learning methods focus on learning the directed acyclic graph (DAG) without latent variables. A number of score-based methods have recently been proposed for the ADMG learning, yet they are heuristic in nature and do not guarantee an optimal solution. We propose a novel exact score-based method that solves an integer programming (IP) formulation and returns a score-maximizing ancestral ADMG for a set of continuous variables. In particular, we generalize the state-of-the-art IP model for DAG learning problems and derive new classes of valid inequalities to formalize the IP-based ADMG learning model. Empirically our model can be solved efficiently for medium-sized problems and achieves better accuracy than state-of-the-art score-based methods as well as benchmark constraint-based methods.