About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Zeitschrift für Physik B Condensed Matter
Paper
On the theory of layered high-temperature superconductors: Finite temperature properties
Abstract
We extend the study of a model for layered high-temperature superconductors to finite temperatures. The model assumes Fermi liquid properties for the carriers, which form a narrow tight-binding band. The carriers are subject to on-site intralayer and nearest neighbor interlayer interactions. The previous studies of the zero temperature properties, revealing remarkable agreement with experimental data, are extended to finite temperatures. These properties include the tunneling conductance for diffuse and specular transmission in a normal isolator superconductor junction, specific heat, nuclear spin relaxation time and the London penetration depth. Our results are compared with experimental findings. © 1990 Springer-Verlag.