About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Time Series Analysis
Paper
On robust spectral analysis by least absolute deviations
Abstract
The method of least absolute deviations has been successfully used in construction of robust tools for spectral analysis under the conditions of outliers and heavy-tailed statistical distributions. This article compares two such spectral analyzers, called the Laplace periodograms of the first and second kind, which can be viewed as robust alternatives to the ordinary periodogram. The article proves that the Laplace periodogram of the second kind has a similar asymptotic distribution to the Laplace periodogram of the first kind which established its association with the zero-crossing spectrum in a recent publication. The article also demonstrates that the Laplace periodogram of the second kind has a smoother sample path which is more suitable for visualization, identification, and estimation of arbitrarily located narrowband components. Extensions of the results to complex time series are discussed. © 2011 Blackwell Publishing Ltd.