About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Electronic Journal of Combinatorics
Paper
Omittable planes
Abstract
In analogy to omittable lines in the plane, we initiate the study of omittable planes in 3-space. Given a collection of n planes in real projective 3-space, a plane Π is said to be omittable if Π is free of ordinary lines of intersection - in other words, if all the lines of intersection of Π with other planes from the collection come at the intersection of three or more planes. We provide two infinite families of planes yielding omittable planes in either a pencil or near-pencil, together with examples having between three and seven omittable planes, examples that we call "sporadic," which do not fit into either of the two infinite families.