About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Nonadiabatic effects in the collision of F(2P) with H 2(1Σg+). III Scattering theory and coupled-channel computations
Abstract
The theory of nonreactive atom-diatom collisions in the presence of multiple electronic surfaces is developed in both space-fixed and body-fixed coordinate frames. The formalism is applied to the scattering of fluorine atoms by para- and ortho-hydrogen molecules. Coupled-channel computations of integral cross sections for fine structure and rotational transitions are carried out in the rigid rotor approximation using ab initio self-consistent-field potential energy surfaces and are facilitated by the use of a diabatic representation of the molecular channel states. The magnitudes of the cross sections at a specific translational energy are found in general to decrease with increasing energy defect. For F(2P1/2)+p-H2 the cross section for a near resonant electronic-to-rotational energy transfer process dominates other inelastic transitions by at least an order of magnitude. Copyright © 1977 American Institute of Physics.