About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physics of Fluids B
Paper
New fluid model for the turbulent transport due to the ion temperature gradient
Abstract
A new set of equations appropriate for the study of the turbulence, due to the ion temperature gradient in the slab in the fluid description, is proposed. This model is similar to many existing models including the one used in the work of Hamaguchi and Horton (HH) [S. Hamaguchi and W. Horton, Phys. Fluids B 2, 1834 (1990)]. The main difference is that in this model the ion diamagnetic drift contributes to the kinetic energy in the energy balance relation. It is achieved through more complete analysis for the polarization drift due to the finite-Larmor-radius effects. The linear growth rate in the model is found to be smaller and the numerical results show that the heat transport is smaller by an order of magnitude when compared to HH. © 1993 American Institute of Physics.