About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TPAMI
Paper
Neural Sensors: Learning Pixel Exposures for HDR Imaging and Video Compressive Sensing with Programmable Sensors
Abstract
Camera sensors rely on global or rolling shutter functions to expose an image. This fixed function approach severely limits the sensors' ability to capture high-dynamic-range (HDR) scenes and resolve high-speed dynamics. Spatially varying pixel exposures have been introduced as a powerful computational photography approach to optically encode irradiance on a sensor and computationally recover additional information of a scene, but existing approaches rely on heuristic coding schemes and bulky spatial light modulators to optically implement these exposure functions. Here, we introduce neural sensors as a methodology to optimize per-pixel shutter functions jointly with a differentiable image processing method, such as a neural network, in an end-to-end fashion. Moreover, we demonstrate how to leverage emerging programmable and re-configurable sensor-processors to implement the optimized exposure functions directly on the sensor. Our system takes specific limitations of the sensor into account to optimize physically feasible optical codes and we evaluate its performance for snapshot HDR and high-speed compressive imaging both in simulation and experimentally with real scenes.